Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

Don't used output of 1.jpeg. Use original w/out rectangle. Try this with images and see what happend. image of 1.jpeg. image description And template too: image description And output: image description

Don't used output of 1.jpeg. Use original w/out rectangle. Try this with images and see what happend. image of 1.jpeg. image description1.jpeg:

image description And template too: image description And output: image description

Don't used output of 1.jpeg. Use original w/out rectangle. Try this with images and see what happend. image of 1.jpeg:

image descriptionimage description And template too: image description And output: image description

Don't used output of 1.jpeg. Use original w/out rectangle. Try this with images and see what happend. image of 1.jpeg:happend:

image of 1.jpeg: image description And template too: image description And output: image description

Don't used output of 1.jpeg. Use original w/out rectangle. Try this with images and see what happend:

I also removed threshold too. Here is code: import cv2 import numpy as np

img = cv2.imread("simpsons.jpg") gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) template = cv2.imread("barts_face.jpg", 0) w, h = template.shape[::-1]

result = cv2.matchTemplate(gray_img, template, cv2.TM_CCOEFF_NORMED) loc = np.where(result >= 0.4)

for pt in zip(*loc[::-1]): cv2.rectangle(img, pt, (pt[0] + w, pt[1] + h), (0, 255, 0), 3)

cv2.imwrite('Result1.jpg', img) cv2.imshow("img", img)

cv2.waitKey(0) cv2.destroyAllWindows()

image of 1.jpeg: image description And template too: image description And output: image description

Don't used output of 1.jpeg. Use original w/out rectangle. Try this with images and see what happend:

I also removed threshold too. Here is code: code:

import cv2
import numpy as np

np

img = cv2.imread("simpsons.jpg") gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) template = cv2.imread("barts_face.jpg", 0) w, h = template.shape[::-1]

template.shape[::-1]

result = cv2.matchTemplate(gray_img, template, cv2.TM_CCOEFF_NORMED) loc = np.where(result >= 0.4)

0.4)

for pt in zip(*loc[::-1]): cv2.rectangle(img, pt, (pt[0] + w, pt[1] + h), (0, 255, 0), 3)

3)

cv2.imwrite('Result1.jpg', img) cv2.imshow("img", img)

img)

cv2.waitKey(0) cv2.destroyAllWindows()

cv2.destroyAllWindows()

image of 1.jpeg: image description And template too: image description And output: image description

Don't used output of 1.jpeg. Use original w/out rectangle. Try this with images and see what happend:

I also removed threshold threshold too. Here is code:

import cv2
import numpy as np

img = cv2.imread("simpsons.jpg")
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
template = cv2.imread("barts_face.jpg", 0)
w, h = template.shape[::-1]

result = cv2.matchTemplate(gray_img, template, cv2.TM_CCOEFF_NORMED)
loc = np.where(result >= 0.4)

for pt in zip(*loc[::-1]):
    cv2.rectangle(img, pt, (pt[0] + w, pt[1] + h), (0, 255, 0), 3)

cv2.imwrite('Result1.jpg', img)
cv2.imshow("img", img)

cv2.waitKey(0)
cv2.destroyAllWindows()

image of 1.jpeg: image description And template too: image description And output: image description

Don't used output of 1.jpeg. Use original w/out rectangle. Try this with images and see what happend:

I also removed threshold too. Here is code:

import cv2
import numpy as np

img = cv2.imread("simpsons.jpg")
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
template = cv2.imread("barts_face.jpg", 0)
w, h = template.shape[::-1]

result = cv2.matchTemplate(gray_img, template, cv2.TM_CCOEFF_NORMED)
loc = np.where(result >= 0.4)

for pt in zip(*loc[::-1]):
    cv2.rectangle(img, pt, (pt[0] + w, pt[1] + h), (0, 255, 0), 3)

cv2.imwrite('Result1.jpg', img)
cv2.imshow("img", img)

cv2.waitKey(0)
cv2.destroyAllWindows()

image of 1.jpeg: image description

And template too: image description

And output: image description