# USAGE
python train_ssns_detector.py --dataset dataset
import the necessary packages
from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.applications import MobileNetV2 from tensorflow.keras.layers import AveragePooling2D from tensorflow.keras.layers import Dropout from tensorflow.keras.layers import Flatten from tensorflow.keras.layers import Dense from tensorflow.keras.layers import Input from tensorflow.keras.models import Model from tensorflow.keras.optimizers import Adam from tensorflow.keras.applications.mobilenet_v2 import preprocess_input from tensorflow.keras.preprocessing.image import img_to_array from tensorflow.keras.preprocessing.image import load_img from tensorflow.keras.utils import to_categorical from sklearn.preprocessing import LabelBinarizer from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report from imutils import paths import matplotlib.pyplot as plt import numpy as np import argparse import os
construct the argument parser and parse the arguments
ap = argparse.ArgumentParser() ap.add_argument("-d", "--dataset", required=True, help="path to input dataset") ap.add_argument("-p", "--plot", type=str, default="plot.png", help="path to output loss/accuracy plot") ap.add_argument("-m", "--model", type=str, default="mask_detector.model", help="path to output face mask detector model") args = vars(ap.parse_args())
initialize the initial learning rate, number of epochs to train for,
and batch size
INIT_LR = 1e-4 EPOCHS = 20 BS = 32
grab the list of images in our dataset directory, then initialize
the list of data (i.e., images) and class images
print("[INFO] loading images...") imagePaths = list(paths.list_images(args["dataset"])) data = [] labels = []
loop over the image paths
for imagePath in imagePaths: # extract the class label from the filename label = imagePath.split(os.path.sep)[-2]
# load the input image (224x224) and preprocess it
image = load_img(imagePath, target_size=(224, 224))
image = img_to_array(image)
image = preprocess_input(image)
# update the data and labels lists, respectively
data.append(image)
labels.append(label)
convert the data and labels to NumPy arrays
data = np.array(data, dtype="int32") labels = np.array(labels)
perform one-hot encoding on the labels
lb = LabelBinarizer() labels = lb.fit_transform(labels) labels = to_categorical(labels)
partition the data into training and testing splits using 75% of
the data for training and the remaining 25% for testing
(trainX, testX, trainY, testY) = train_test_split(data, labels, test_size=0.25, stratify=labels, random_state=42)
construct the training image generator for data augmentation
aug = ImageDataGenerator( rotation_range=20, zoom_range=0.15, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.15, horizontal_flip=True, fill_mode="nearest")
load the MobileNetV2 network, ensuring the head FC layer sets are
left off
baseModel = MobileNetV2(weights="imagenet", include_top=False, input_tensor=Input(shape=(224, 224, 3)))
construct the head of the model that will be placed on top of the
the base model
headModel = baseModel.output headModel = AveragePooling2D(pool_size=(7, 7))(headModel) headModel = Flatten(name="flatten")(headModel) headModel = Dense(128, activation="relu")(headModel) headModel = Dropout(0.5)(headModel) headModel = Dense(2, activation="softmax")(headModel)
place the head FC model on top of the base model (this will become
the actual model we will train)
model = Model(inputs=baseModel.input, outputs=headModel)
loop over all layers in the base model and freeze them so they will
not be updated during the first training process
for layer in baseModel.layers: layer.trainable = False
compile our model
print("[INFO] compiling model...") opt = Adam(lr=INIT_LR, decay=INIT_LR / EPOCHS) model.compile(loss="binary_crossentropy", optimizer=opt, metrics=["accuracy"])
train the head of the network
print("[INFO] training head...") H = model.fit( aug.flow(trainX, trainY, batch_size=BS), steps_per_epoch=len(trainX) // BS, validation_data=(testX, testY), validation_steps=len(testX) // BS, epochs=EPOCHS)
make predictions on the testing set
print("[INFO] evaluating network...") predIdxs = model.predict(testX, batch_size=BS)
for each image in the testing set we need to find the index of the
label with corresponding largest predicted probability
predIdxs = np.argmax(predIdxs, axis=1)
show a nicely formatted classification report
print(classification_report(testY.argmax(axis=1), predIdxs, target_names=lb.classes_))
serialize the model to disk
print("[INFO] saving mask detector model...") model.save(args["model"], save_format="h5")
plot the training loss and accuracy
N = EPOCHS plt.style.use("ggplot") plt.figure() plt.plot(np.arange(0, N), H.history["loss"], label="train_loss") plt.plot(np.arange(0, N), H.history["val_loss"], label="val_loss") plt.plot(np.arange(0, N), H.history["accuracy"], label="train_acc") plt.plot(np.arange(0, N), H.history["val_accuracy"], label="val_acc") plt.title("Training Loss and Accuracy on Spectacles, Sunglasses and No Spectacles") plt.xlabel("Epoch #") plt.ylabel("Loss/Accuracy") plt.legend(loc="lower left") plt.savefig(args["plot"])
The Error is sklearn Logistic Regression “ValueError: Found array with dim 3. Estimator expected <= 2.”