here's my code
``` import os import cv2 import numpy as np import tensorflow as tf import sys
sys.path.append("..")
from utils import label_map_util from utils import visualization_utils as vis_util from api import object_counting_api
MODEL_NAME = 'inference_graph' IMAGE_NAME = 'tree.png'
CWD_PATH = os.getcwd()
PATH_TO_CKPT = os.path.join(CWD_PATH,MODEL_NAME,'frozen_inference_graph.pb')
PATH_TO_LABELS = os.path.join(CWD_PATH,'training','labelmap.pbtxt')
PATH_TO_IMAGE = os.path.join(CWD_PATH,IMAGE_NAME)
NUM_CLASSES = 2
label_map = label_map_util.load_labelmap(PATH_TO_LABELS) categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True) category_index = label_map_util.create_category_index(categories)
detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='')
sess = tf.Session(graph=detection_graph)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0') detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
image = cv2.imread(PATH_TO_IMAGE) image_expanded = np.expand_dims(image, axis=0)
(boxes, scores, classes, num) = sess.run( [detection_boxes, detection_scores, detection_classes, num_detections], feed_dict={image_tensor: image_expanded})
vis_util.visualize_boxes_and_labels_on_image_array( image, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=1, min_score_thresh=0.50)
cv2.imshow('Object detector', image)
cv2.waitKey(0)
cv2.destroyAllWindows() ```