import cv2 import numpy as np
image = cv2.imread('Letter.png') cv2.imshow('orig',image) cv2.waitKey(0)
gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) cv2.imshow('gray',gray) cv2.waitKey(0) cv2.destroyAllWindows()
ret,thresh = cv2.threshold(gray,127,255,cv2.THRESH_BINARY_INV) cv2.imshow('second',thresh) cv2.waitKey(0) cv2.destroyAllWindows()
kernel = np.ones((5,5), np.uint8) img_dilation = cv2.dilate(thresh, kernel, iterations=1) cv2.imshow('dilated',img_dilation) cv2.waitKey(0) cv2.destroyAllWindows()
im2,ctrs, hier = cv2.findContours(img_dilation.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
sort contours
sorted_ctrs = sorted(ctrs, key=lambda ctr: cv2.boundingRect(ctr)[1])
for i, ctr in enumerate(sorted_ctrs): # Get bounding box x, y, w, h = cv2.boundingRect(ctr)
# Getting ROI
roi = image[y:y+h, x:x+w]
# show ROI
cv2.imshow('segment no:'+str(i),roi)
cv2.rectangle(image,(x,y),( x + w, y + h ),(90,0,255),2)
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.imshow('marked areas',image) cv2.waitKey(0) cv2.destroyAllWindows() print "Number of Contours %d ->"%len(ctrs)