Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

Problem with knn

Hi there,

Im using OpenCV 2.4.12 with Visual Studio 2012. I am trying to classify facial age into three classes. i have extracted the features using PCA in image form. How do i insert the features into knn algorithm?

I do not understand these lines. What are these files for?

FILE *fp2 = fopen("C:\Users\Dorothea\Desktop\train-labels-idx1-ubyte.gz","rb");

FILE *fp2 = fopen("C:\Users\Dorothea\Desktop\train-images.idx1-ubyte","rb");

Below is my knn code. ..........

using namespace cv;

int readFlippedInteger(FILE *fp) {

int ret = 0;

BYTE *temp;

temp = (BYTE*)(&ret);
fread(&temp[3], sizeof(BYTE), 1, fp);
fread(&temp[2], sizeof(BYTE), 1, fp);
fread(&temp[1], sizeof(BYTE), 1, fp);
fread(&temp[0], sizeof(BYTE), 1, fp);

return ret;

}

int main() {

FILE *fp2 = fopen("C:\\Users\\Dorothea\\Desktop\\train-labels-idx1-ubyte.gz","rb");
FILE *fp2 = fopen("C:\\Users\\Dorothea\\Desktop\\train-images.idx1-ubyte","rb");

if(!fp||!fp2)

int magicNumber = readFlippedInteger(fp);
int numImages = readFlippedInteger(fp);

int numRows = readFlippedInteger(fp);
int numCols = readFlippedInteger(fp);

fseek(fp2, 0x88, SEEK_SET);

int size = numRows*numCols;
CvMat *trainingVectors = cvCreateMat(numImages, size, CV_32FC1);
CvMat *trainingLabels = cvCreateMat(numImages, 1, CV_32FC1);

BYTE *temp = new BYTE[size];
BYTE tempClass=0;
for(int=0;i<numImages,i++)
{
    fread((void*)temp, size, 1, fp);
    fread((void*)(&tempClass),sizeof(BYTE),1,fp2);

    trainingLabels->data.fl[i]= tempClass;

    for(int k=0; k<size; k++)
        trainingVectors->data.fl[i*size+k]= temp[k];
}

KNearest knn(trainingVectors, trainingLabels);

printf("Maximum k: %d", knn.get_max_k());

fclose(fp);
fclose(fp2);

cvReleaseMat(&trainingVectors);
cvReleaseMat(&trainingLabels);

//////////////////// Testing //////////////////////////

fp= fopen("C:\\Users\\Dorothea\\Desktop\\t10k-images.idx3-ubyte", "rb");
fp= fopen("C:\\Users\\Dorothea\\Desktop\\t10k-labels.idx1-ubyte", "rb");

magicNumber = readFlippedInteger(fp);
numImages = readFlippedInteger(fp);
numRows = readFlippedInteger(fp);
numCols = readFlippedInteger(fp);

fseek(fp2, 0x08, SEEK_SET);

CvMat *testVectors = cvCreateMat(numImages, size, CV_32FC1);
CvMat *testLabels = cvCreateMat(numImages, 1, CV_32FC1);
CvMat *actualLabels = cvCreateMat(numImages, 1, CV_32FC1);

temp= new BYTE[size];
tempClass=1;
CvMat *currentTest= cvCreateMat(1, size, CV_32FC1);
CvMat *currentLabel = cvCreateMat(1, 1, CV_32FC1);

int totalCorrect=0;

for(int i=0; i<numImages; i++)
{
    fread((void*)temp, size, 1, fp);
    fread((void*)(&tempClass),sizeof(BYTE),1,fp2);

    actualLabels->data.fl[i]= (float)tempClass;

    for(int k=0; k<size; k++)
    {
        trainingVectors->data.fl[i*size+k]= temp[k];
        currentTest->data.fl[k]= temp[k];
    }

    knn.find_nearest(currentTest, 5, currentLabel);
    testLabels->data.fl[i] = currentLabel->data.fl[0];
    if(currentLabel->data.fl[0]==actualLabels->data.fl[i])
        totalCorrect++;

}
    printf("Time: %d Accuracy: %f ", (int)time, (double)totalCorrect*100/(double)numImages);


return 0;

}

Thank you in advance

Problem with knn

Hi there,

Im using OpenCV 2.4.12 with Visual Studio 2012. I am trying to classify facial image based 3 age into three classes. groups. i have extracted the features using PCA in image form. How do i insert the features into knn algorithm?

I do not understand these lines. What are these files for?

FILE *fp2 = fopen("C:\Users\Dorothea\Desktop\train-labels-idx1-ubyte.gz","rb");

FILE *fp2 = fopen("C:\Users\Dorothea\Desktop\train-images.idx1-ubyte","rb");

Below is my knn PCA code. ..........

I need help to classify the images using namespace cv;

int readFlippedInteger(FILE *fp) {the features extracted using knn.

#include "opencv2/contrib/contrib.hpp"
#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"

#include <iostream>
#include <fstream>
#include <sstream>

using namespace cv;
using namespace std;

static Mat norm_0_255(InputArray _src) {
    Mat src = _src.getMat();
    // Create and return normalized image:
    Mat dst;
    switch(src.channels()) {
    case 1:
        cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC1);
        break;
    case 3:
        cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC3);
        break;
    default:
        src.copyTo(dst);
        break;
    }
    return dst;
}

static void read_csv(const string& filename, vector<Mat>& images, vector<int>& labels, char separator = ';') {
    std::ifstream file(filename.c_str(), ifstream::in);
    if (!file) {
        string error_message = "No valid input file was given, please check the given filename.";
        CV_Error(CV_StsBadArg, error_message);
    }
    string line, path, classlabel;
    while (getline(file, line)) {
        stringstream liness(line);
        getline(liness, path, separator);
        getline(liness, classlabel);
        if(!path.empty() && !classlabel.empty()) {
            images.push_back(imread(path, 0));
            labels.push_back(atoi(classlabel.c_str()));
        }
    }
}

int ret = main(int argc, const char *argv[]) {
    // Check for valid command line arguments, print usage
    // if no arguments were given.
    if (argc < 2) {
        cout << "usage: " << argv[0] << " <csv.ext> <output_folder> " << endl;
        exit(1);
    }
    string output_folder = ".";
    if (argc == 3) {
        output_folder = string(argv[2]);
    }
    // Get the path to your CSV.
    string fn_csv = string(argv[1]);
    // These vectors hold the images and corresponding labels.
    vector<Mat> images;
    vector<int> labels;
    // Read in the data. This can fail if no valid
    // input filename is given.
    try {
        read_csv(fn_csv, images, labels);
    } catch (cv::Exception& e) {
        cerr << "Error opening file \"" << fn_csv << "\". Reason: " << e.msg << endl;
        // nothing more we can do
        exit(1);
    }
    // Quit if there are not enough images for this demo.
    if(images.size() <= 1) {
        string error_message = "This demo needs at least 2 images to work. Please add more images to your data set!";
        CV_Error(CV_StsError, error_message);
    }
    // Get the height from the first image. We'll need this
    // later in code to reshape the images to their original
    // size:
    int height = images[0].rows;
    // The following lines simply get the last images from
    // your dataset and remove it from the vector. This is
    // done, so that the training data (which we learn the
    // cv::FaceRecognizer on) and the test data we test
    // the model with, do not overlap.
    Mat testSample = images[images.size() - 1];
    int testLabel = labels[labels.size() - 1];
    images.pop_back();
    labels.pop_back();
    // The following lines create an Eigenfaces model for
    // face recognition and train it with the images and
    // labels read from the given CSV file.
    // This here is a full PCA, if you just want to keep
    // 10 principal components (read Eigenfaces), then call
    // the factory method like this:
    //
    //      cv::createEigenFaceRecognizer(10);
    //
    // If you want to create a FaceRecognizer with a
    // confidence threshold (e.g. 123.0), call it with:
    //
    //      cv::createEigenFaceRecognizer(10, 123.0);
    //
    // If you want to use _all_ Eigenfaces and have a threshold,
    // then call the method like this:
    //
    //      cv::createEigenFaceRecognizer(0, 123.0);
    //
    Ptr<FaceRecognizer> model0 = createEigenFaceRecognizer();
    model0->train(images, labels);
    // save the model to eigenfaces_at.yaml
    model0->save("eigenfaces_at.yml");
    //
    //
    // Now create a new Eigenfaces Recognizer
    //
    Ptr<FaceRecognizer> model1 = createEigenFaceRecognizer();
    model1->load("eigenfaces_at.yml");
    // The following line predicts the label of a given
    // test image:
    int predictedLabel = model1->predict(testSample);
    //
    // To get the confidence of a prediction call the model with:
    //
    //      int predictedLabel = -1;
    //      double confidence = 0.0;
    //      model->predict(testSample, predictedLabel, confidence);
    //
    string result_message = format("Predicted class = %d / Actual class = %d.", predictedLabel, testLabel);
    cout << result_message << endl;
    // Here is how to get the eigenvalues of this Eigenfaces model:
    Mat eigenvalues = model1->getMat("eigenvalues");
    // And we can do the same to display the Eigenvectors (read Eigenfaces):
    Mat W = model1->getMat("eigenvectors");
    // Get the sample mean from the training data
    Mat mean = model1->getMat("mean");
    // Display or save:
    if(argc == 2) {
        imshow("mean", norm_0_255(mean.reshape(1, images[0].rows)));
    } else {
        imwrite(format("%s/mean.png", output_folder.c_str()), norm_0_255(mean.reshape(1, images[0].rows)));
    }
    // Display or save the Eigenfaces:
    for (int i = 0; i < min(10, W.cols); i++) {
        string msg = format("Eigenvalue #%d = %.5f", i, eigenvalues.at<double>(i));
        cout << msg << endl;
        // get eigenvector #i
        Mat ev = W.col(i).clone();
        // Reshape to original size & normalize to [0...255] for imshow.
        Mat grayscale = norm_0_255(ev.reshape(1, height));
        // Show the image & apply a Jet colormap for better sensing.
        Mat cgrayscale;
        applyColorMap(grayscale, cgrayscale, COLORMAP_JET);
        // Display or save:
        if(argc == 2) {
            imshow(format("eigenface_%d", i), cgrayscale);
        } else {
            imwrite(format("%s/eigenface_%d.png", output_folder.c_str(), i), norm_0_255(cgrayscale));
        }
    }
    // Display or save the image reconstruction at some predefined steps:
    for(int num_components = 300; num_components < 10; num_components+=15) {
        // slice the eigenvectors from the model
        Mat evs = Mat(W, Range::all(), Range(0, num_components));
        Mat projection = subspaceProject(evs, mean, images[0].reshape(1,1));
        Mat reconstruction = subspaceReconstruct(evs, mean, projection);
        // Normalize the result:
        reconstruction = norm_0_255(reconstruction.reshape(1, images[0].rows));
        // Display or save:
        if(argc == 2) {
            imshow(format("eigenface_reconstruction_%d", num_components), reconstruction);
        } else {
            imwrite(format("%s/eigenface_reconstruction_%d.png", output_folder.c_str(), num_components), reconstruction);
        }
    }
    // Display if we are not writing to an output folder:
    if(argc == 2) {
        waitKey(0);
    }
    return 0;

BYTE *temp;

temp = (BYTE*)(&ret);
fread(&temp[3], sizeof(BYTE), 1, fp);
fread(&temp[2], sizeof(BYTE), 1, fp);
fread(&temp[1], sizeof(BYTE), 1, fp);
fread(&temp[0], sizeof(BYTE), 1, fp);

return ret;
}

}

int main() {

FILE *fp2 = fopen("C:\\Users\\Dorothea\\Desktop\\train-labels-idx1-ubyte.gz","rb");
FILE *fp2 = fopen("C:\\Users\\Dorothea\\Desktop\\train-images.idx1-ubyte","rb");

if(!fp||!fp2)

int magicNumber = readFlippedInteger(fp);
int numImages = readFlippedInteger(fp);

int numRows = readFlippedInteger(fp);
int numCols = readFlippedInteger(fp);

fseek(fp2, 0x88, SEEK_SET);

int size = numRows*numCols;
CvMat *trainingVectors = cvCreateMat(numImages, size, CV_32FC1);
CvMat *trainingLabels = cvCreateMat(numImages, 1, CV_32FC1);

BYTE *temp = new BYTE[size];
BYTE tempClass=0;
for(int=0;i<numImages,i++)
{
    fread((void*)temp, size, 1, fp);
    fread((void*)(&tempClass),sizeof(BYTE),1,fp2);

    trainingLabels->data.fl[i]= tempClass;

    for(int k=0; k<size; k++)
        trainingVectors->data.fl[i*size+k]= temp[k];
}

KNearest knn(trainingVectors, trainingLabels);

printf("Maximum k: %d", knn.get_max_k());

fclose(fp);
fclose(fp2);

cvReleaseMat(&trainingVectors);
cvReleaseMat(&trainingLabels);

//////////////////// Testing //////////////////////////

fp= fopen("C:\\Users\\Dorothea\\Desktop\\t10k-images.idx3-ubyte", "rb");
fp= fopen("C:\\Users\\Dorothea\\Desktop\\t10k-labels.idx1-ubyte", "rb");

magicNumber = readFlippedInteger(fp);
numImages = readFlippedInteger(fp);
numRows = readFlippedInteger(fp);
numCols = readFlippedInteger(fp);

fseek(fp2, 0x08, SEEK_SET);

CvMat *testVectors = cvCreateMat(numImages, size, CV_32FC1);
CvMat *testLabels = cvCreateMat(numImages, 1, CV_32FC1);
CvMat *actualLabels = cvCreateMat(numImages, 1, CV_32FC1);

temp= new BYTE[size];
tempClass=1;
CvMat *currentTest= cvCreateMat(1, size, CV_32FC1);
CvMat *currentLabel = cvCreateMat(1, 1, CV_32FC1);

int totalCorrect=0;

for(int i=0; i<numImages; i++)
{
    fread((void*)temp, size, 1, fp);
    fread((void*)(&tempClass),sizeof(BYTE),1,fp2);

    actualLabels->data.fl[i]= (float)tempClass;

    for(int k=0; k<size; k++)
    {
        trainingVectors->data.fl[i*size+k]= temp[k];
        currentTest->data.fl[k]= temp[k];
    }

    knn.find_nearest(currentTest, 5, currentLabel);
    testLabels->data.fl[i] = currentLabel->data.fl[0];
    if(currentLabel->data.fl[0]==actualLabels->data.fl[i])
        totalCorrect++;

}
    printf("Time: %d Accuracy: %f ", (int)time, (double)totalCorrect*100/(double)numImages);


return 0;

}

Thank you in advance