Either segmentation fault 11 or (-215) N >= K
Hello everyone, I am trying to create a Bag of visual Words program, but I am running into an issue. Every time I run the program, I either get a segmentation fault: 11
error, or if I change the dictSize variable I get a error: (-215) N >= K in function kmeans
. Since I am a complete novice, could someone please help me?
#include <opencv2/core/core.hpp>
#include "opencv2/highgui/highgui.hpp"
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/xfeatures2d.hpp>
#include <iostream>
#include <stdio.h>
#include <dirent.h>
#include <string.h>
using namespace std;
using namespace cv;
int main(int argc, const char** argv) {
//=================================== LEARN ===================================
struct dirent *de = NULL;
DIR *d = NULL;
d = opendir(argv[1]);
if(d == NULL)
{
perror("Couldn't open directory");
return(2);
}
Mat input;
vector<KeyPoint> keypoints;
Mat descriptor;
Mat featuresUnclustered;
Ptr<DescriptorExtractor> detector = xfeatures2d::SIFT::create();
while((de = readdir(d))){
if ((strcmp(de->d_name,".") != 0) && (strcmp(de->d_name,"..") != 0) && (strcmp(de->d_name,".DS_Store") != 0)) {
char fullPath[] = "./";
strcat(fullPath, argv[1]);
strcat(fullPath, de->d_name);
printf("Current File: %s\n",fullPath);
input = imread(fullPath,CV_LOAD_IMAGE_GRAYSCALE);
cout << "Img size => x: " << input.size().width << ", y: " << input.size().height << endl;
// If the incoming frame is too big, resize it
if (input.size().width > 3000) {
double ratio = (3000.0)/(double)input.size().width;
resize(input, input, cvSize(0, 0), ratio, ratio);
cout << "New size => x: " << input.size().width << ", y: " << input.size().height << endl;
}
detector->detect(input, keypoints);
detector->compute(input, keypoints, descriptor);
featuresUnclustered.push_back(descriptor);
}
}
closedir(d);
int dictSize = 200;
TermCriteria tc(CV_TERMCRIT_ITER,100,0.001);
int retries = 1;
int flags = KMEANS_PP_CENTERS;
BOWKMeansTrainer bowTrainer(dictSize,tc,retries,flags);
Mat dictionary = bowTrainer.cluster(featuresUnclustered);
FileStorage fs("dict.yml",FileStorage::WRITE);
fs << "vocabulary" << dictionary;
fs.release();
return 0;
}
N >= K
means, that you need to have more features (N) than desired clusters (K).you don't have enough features to make 200 clusters.
So how should I change my code? Sorry but I am completely lost
either use more images, or reduce dictSize, i guess ?
try:
cerr << featuresUnclustered.size() << endl;
to see, how many you gotreturns [128 x 1999], so I tried with both 128 and 1999 as a dictSize, still crashes
I have the same problem. Have you fixed it ??