how to detect and remove shadow of a object
hey everyone,
I am working to detect and remove shadow of a object from in image. any suggestion would be appreciated .
Thanks
hey everyone,
I am working to detect and remove shadow of a object from in image. any suggestion would be appreciated .
Thanks
This is my code for detect shadow:
void ShadowDetection(Mat image)
{
Mat imageShadow =image.clone();
int iW = imageShadow.size().width;
int iH = imageShadow.size().height;
Mat imgTmp = imageShadow.clone();
unsigned char* dataTmp = imgTmp.data;
unsigned char* data = imageShadow.data;
int channel = imageShadow.channels();
for(int i=5; i< iH-5; i++) //
{
for(int j=5; j< iW-5; j++)
{
int B = data[channel*(i*iW+j)];
int G = data[channel*(i*iW+j)+1];
int R = data[channel*(i*iW+j)+2];
float H;
float S;
float V;
//Convert RGB to HSV
float var_R = ( R / 255.0 ) ; //RGB from 0 to 255
float var_G = ( G / 255.0 );
float var_B = ( B / 255.0 );
float var_Min = MIN( MIN(var_R, var_G), var_B ) ; //Min. value of RGB
float var_Max = MAX( MAX(var_R, var_G), var_B ) ; //Max. value of RGB
float del_Max = var_Max - var_Min ; //Delta RGB value
V = var_Max;
if ( del_Max == 0 ) //This is a gray, no chroma...
{
H = 0 ; //HSV results from 0 to 1
S = 0;
}
else //Chromatic data...
{
S = del_Max / var_Max;
float del_R = ( ( ( var_Max - var_R ) / 6 ) + ( del_Max / 2 ) ) / del_Max;
float del_G = ( ( ( var_Max - var_G ) / 6 ) + ( del_Max / 2 ) ) / del_Max;
float del_B = ( ( ( var_Max - var_B ) / 6 ) + ( del_Max / 2 ) ) / del_Max;
if ( var_R == var_Max ) H = del_B - del_G;
else if ( var_G == var_Max ) H = ( 1 / 3 ) + del_R - del_B;
else if ( var_B == var_Max ) H = ( 2 / 3 ) + del_G - del_R;
if ( H < 0 ) H += 1;
if ( H > 1 ) H -= 1;
}
//if(V>0.3 && V<0.85 && H<85 && S<0.15)
//if(V>0.5 && V<0.95 && S<0.2)
if(V>0.3 && V<0.95 && S<0.2)
{
data[channel*(i*iW+j)] = 0;// dataTmp[channel*(i*iW+j)];
data[channel*(i*iW+j)+1]=0;// dataTmp[channel*(i*iW+j)+1];
data[channel*(i*iW+j)+2]=0;// dataTmp[channel*(i*iW+j)+2];
}
else
{
data[channel*(i*iW+j)] = 255;
data[channel*(i*iW+j)+1]= 255;
data[channel*(i*iW+j)+2]= 255;
}
}
}
//Find big area of shadow
Mat imageGray;
cvtColor(imageShadow,imageGray,CV_RGB2GRAY);
int dilation_size =2;
Mat element = getStructuringElement( MORPH_ELLIPSE,
Size( 2*dilation_size + 1, 2*dilation_size+1 ),
Point( dilation_size, dilation_size ) );
/// Apply the dilation operation to remove small areas
dilate( imageGray, imageGray, element );
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;
/// Find contours
findContours( imageGray, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0) );
vector<vector<Point> > contoursResult;
for( int m = 0; m < contours.size(); m++ )
{
int area = contourArea(contours[m]);
if(area>400 && area < iW*iH/10)
{
contoursResult.push_back(contours[m]);
}
}
}
@thienlamnhan could you provide sample input and output images of your code?
Hi, I'm new and I've been working on image processing and shadow detection for a while. This code actually works, it's not very accurate, but at least it works. First you have to change some things (draw the contours in the final loop in stead of saving them into a data structure, so you can see the results). I can show you an example of the final result: pre-shadowdetection, after-shadowdetection.
Apply BackgroundSubtractorMOG2 to solve it. It can detect shadow. Then you use threshold to remove shadow.
// Init background substractor
Ptr<backgroundsubtractor> bg_model = createBackgroundSubtractorMOG2().dynamicCast<backgroundsubtractor>();
bg_model->apply(img, mask);
threshold(mask, mask, 200, 255, THRESH_BINARY);
Asked: 2015-06-07 13:19:54 -0600
Seen: 13,493 times
Last updated: Jan 05 '17
How to remove detected shadows from foreground image using Background Subtraction MOG2
Fish detection. Is haartraining a good approach ?
How to reduce false positives for face detection
Performance evaluation for detection
How can I debug into function like "cvCreateTreeCascadeClassifier "?
Recognising a Hand using an Image Patch - Advice
Human detector using HAAR cascades has too many false positives it is confident about