Ask Your Question
0

cv::gpu::remap comparatively slow

asked 2012-10-17 06:32:00 -0600

Chris3D gravatar image

Hello OpenCV-CUDA community,

because processing speed is very important for my application, I moved my LensUndistortion function from CPU to GPU processing. But the expected performance gain did not show, the opposite is the case, gpu::remap is slower than the cpu remap.

My Measurements for an 1280x720 image remap with linear interpolation:

i5: 9,7ms
i7m: 5,8ms
gts250: 23ms (upload: 2ms, remap: 17ms, download: 4ms)
gtx560m: 40ms ??

The question: am I doing something wrong or is this the expected behavior?

I'm Using OpenCV 2.4.2 with CUDA 4.2.


Here's my code: CPU:

double LensUndistort(CIdarBaseFrame* frameHelper, IplImage* mapX, IplImage* mapY, CvMat* efficientMatX, CvMat* efficientMatY, int quality)
{
    if(frameHelper == NULL || mapX == NULL || mapY == NULL || efficientMatX == NULL || efficientMatY == NULL)
        return -1;

    CHighPerformanceCounter calculations;

    try
    {
        calculations.Tick();

        if(m_pInput == NULL)
        {
            CvSize imgSize = cvSize(frameHelper->GetWidth(), frameHelper->GetHeight());
            m_pInput = cvCreateImage(imgSize, IPL_DEPTH_8U, 3);
        }
        if(m_pOutput == NULL)
        {
            CvSize imgSize = cvSize(frameHelper->GetWidth(), frameHelper->GetHeight());
            m_pOutput = cvCreateImage(imgSize, IPL_DEPTH_8U, 3);
        }

        //write our data into an iplImage container
        //IplImage's imageData field looks like this... BGRBGR : imageData[0] = B; imageData[1] = G; and so on..
        int imageLen = 0;
        m_pInput->imageData = (char*)frameHelper->GetReversedImageBytes(imageLen, timeToDecode);
        switch (quality)
        {
            case 1:
                cvRemap(m_pInput, m_pOutput, efficientMatX, efficientMatY, CV_INTER_LINEAR + cv::BORDER_CONSTANT, cvScalarAll(0)); //9.7ms //this looks good, but takes a little longer than nearest neighbour interpolation
                break;
            case 2: 
                cvRemap(m_pInput, m_pOutput, efficientMatX, efficientMatY, CV_INTER_CUBIC + cv::BORDER_CONSTANT, cvScalarAll(0)); //65ms //this looks good, but takes a lot longer than nearest neighbour interpolation
                break;
            default: //or 0
                cvRemap(m_pInput, m_pOutput, efficientMatX, efficientMatY, CV_INTER_NN + cv::BORDER_CONSTANT); //8.5ms //nearest neighbour interpolation is fastest! But looks shitty :(
                break;
        }

        //set image
        frameHelper->SetReversedImageBytes((BYTE*)(m_pOutput->imageData), imageLen);
    }
    catch( cv::Exception& e )
    {
        const char* err_msg = e.what();
        CString err;
        err.Format(_T("Error while LensUndistort(). Description: %s"), err_msg);
        theLog.Log(err, EVENTLOG_ERROR_TYPE, 0, 0, SERIOUS);
        return -1;
    }
    catch(CException* p_Ex)
    {
        TCHAR lpszError[MAX_TEMP_BUFFER];
        p_Ex->GetErrorMessage(lpszError, MAX_TEMP_BUFFER);

        CString err;
        err.Format(_T("Error while LensUndistort(). Description: %s"), lpszError);
        theLog.Log(err, EVENTLOG_ERROR_TYPE, 0, 0, SERIOUS);
        p_Ex->Delete();
        return -1;
    }

    return calculations.GetDeltaInMS();
}

GPU:

double LensUndistortGPU(CIdarBaseFrame* frameHelper, IplImage* mapX, IplImage* mapY, int quality)
{
    if(frameHelper == NULL || mapX == NULL || mapY == NULL)
        return -1;

    CHighPerformanceCounter calculations;

    try
    {
        calculations.Tick();

        cv::Size imgSize = cv::Size(frameHelper->GetWidth(), frameHelper->GetHeight());

        if(m_inputGPU.data == NULL)
        {
            m_inputGPU = cv::gpu::GpuMat(imgSize, CV_8UC3);
        }
        if(m_outputGPU.data == NULL)
        {
            m_outputGPU = cv::gpu::GpuMat(imgSize, CV_8UC3);
        }

        int imageLen = 0;
        double timeToDecode = 0.0;

        cv::Mat input = cv::Mat(imgSize, CV_8UC3);
        input.data = (uchar*)frameHelper->GetReversedImageBytes(imageLen, timeToDecode); //gets the decoded image bytes (should take no time at all, since the image is already decoded)

        m_inputGPU.upload(input);

        cv::gpu::GpuMat matXGPU(mapX);
        cv::gpu::GpuMat matYGPU(mapY);

        switch (quality)
        {
            case 1:
                cv::gpu::remap(m_inputGPU, m_outputGPU, matXGPU, matYGPU, CV_INTER_LINEAR, cv::BORDER_CONSTANT); //22ms
                break;
            case 2:
                cv::gpu::remap(m_inputGPU, m_outputGPU, matXGPU, matYGPU, CV_INTER_CUBIC, cv::BORDER_CONSTANT); //45ms
                break;
            default: //or 0
                cv::gpu::remap(m_inputGPU, m_outputGPU, matXGPU, matYGPU, CV_INTER_NN, cv::BORDER_CONSTANT); //15ms
                break;
        }

        cv::Mat output = cv::Mat(imgSize, CV_8UC3 ...
(more)
edit retag flag offensive close merge delete

Comments

Try to call that function more than once, and discard the first call results. GPUs need some time to warp up, at the first call from an app.

sammy gravatar imagesammy ( 2012-10-17 07:45:17 -0600 )edit

Yeah thats what I'm doing already, the measurements are from actual runtime, first few calls won't factor in.

Chris3D gravatar imageChris3D ( 2012-10-17 15:24:07 -0600 )edit

1 answer

Sort by ยป oldest newest most voted
0

answered 2015-03-25 11:14:28 -0600

Micka gravatar image

We've had a very strange behaviour where even computational intensive processing like HoG Descriptor Detector were slower than openCV gpu (cuda) functionality, even if overhead was removed from time measurement.

It turned out that OpenCV was using IPP and IPP itself can use GPU nowadays.

just in case someone else googles for "opencv gpu slower" and didnt know about the IPP GPU support ;)

edit flag offensive delete link more

Question Tools

Stats

Asked: 2012-10-17 06:32:00 -0600

Seen: 6,626 times

Last updated: Mar 25 '15