I am getting the error. this is training code for training the model to identify short hair long hair and bald. [closed]

asked 2020-06-16 23:50:00 -0600

VigneshSuresh gravatar image

updated 2020-06-29 21:29:05 -0600

supra56 gravatar image

Code:

# USAGE
# python train_ssns_detector.py --dataset dataset

# import the necessary packages
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.applications import MobileNetV2
from tensorflow.keras.layers import AveragePooling2D
from tensorflow.keras.layers import Dropout
from tensorflow.keras.layers import Flatten
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import Input
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.preprocessing.image import load_img
from tensorflow.keras.utils import to_categorical
from sklearn.preprocessing import LabelBinarizer
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from imutils import paths
import matplotlib.pyplot as plt
import numpy as np
import argparse
import os

# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-d", "--dataset", required=True,
    help="path to input dataset")
ap.add_argument("-p", "--plot", type=str, default="plot.png",
    help="path to output loss/accuracy plot")
ap.add_argument("-m", "--model", type=str,
    default="mask_detector.model",
    help="path to output face mask detector model")
args = vars(ap.parse_args())

# initialize the initial learning rate, number of epochs to train for,
# and batch size
INIT_LR = 1e-4
EPOCHS = 20
BS = 32

# grab the list of images in our dataset directory, then initialize
# the list of data (i.e., images) and class images
print("[INFO] loading images...")
imagePaths = list(paths.list_images(args["dataset"]))
data = []
labels = []

# loop over the image paths
for imagePath in imagePaths:
    # extract the class label from the filename
    label = imagePath.split(os.path.sep)[-2]

    # load the input image (224x224) and preprocess it
    image = load_img(imagePath, target_size=(224, 224))
    image = img_to_array(image)
    image = preprocess_input(image)

    # update the data and labels lists, respectively
    data.append(image)
    labels.append(label)

# convert the data and labels to NumPy arrays
data = np.array(data, dtype="int32")
labels = np.array(labels)

# perform one-hot encoding on the labels
lb = LabelBinarizer()
labels = lb.fit_transform(labels)
labels = to_categorical(labels)


# partition the data into training and testing splits using 75% of
# the data for training and the remaining 25% for testing
(trainX, testX, trainY, testY) = train_test_split(data, labels, test_size=0.25, stratify=labels, random_state=42)


# construct the training image generator for data augmentation
aug = ImageDataGenerator(
    rotation_range=20,
    zoom_range=0.15,
    width_shift_range=0.2,
    height_shift_range=0.2,
    shear_range=0.15,
    horizontal_flip=True,
    fill_mode="nearest")

# load the MobileNetV2 network, ensuring the head FC layer sets are
# left off
baseModel = MobileNetV2(weights="imagenet", include_top=False,
    input_tensor=Input(shape=(224, 224, 3)))

# construct the head of the model that will be placed on top of the
# the base model
headModel = baseModel.output
headModel = AveragePooling2D(pool_size=(7, 7))(headModel)
headModel = Flatten(name="flatten")(headModel)
headModel = Dense(128, activation="relu")(headModel)
headModel = Dropout(0.5)(headModel)
headModel = Dense(2, activation="softmax")(headModel)

# place the head FC model on top of the base model (this will become
# the actual model we will train)
model = Model(inputs=baseModel.input, outputs=headModel)

# loop over all layers in the base model and freeze them ...
(more)
edit retag flag offensive reopen merge delete

Closed for the following reason question is off-topic or not relevant by berak
close date 2020-06-20 10:44:04.953966

Comments

2

it's not even using opencv ;(

berak gravatar imageberak ( 2020-06-17 01:11:37 -0600 )edit
2
  1. This is tensorflow specific not related to opencv - yes in this forum there a some guys with ml knowledge - still the wrong place
  2. The code is very bad formatted - its hard to see anything

The error msg says: Found array with dim 3. Estimator expected <= 2.”. It say whats the problem - your input array has the wrong dimensionality. I think you need to supply your train data as a vector instead of an matrix. So you need to stack the pixel values.

Look here: https://stackoverflow.com/questions/3...

holger gravatar imageholger ( 2020-06-17 05:45:51 -0600 )edit