1 | initial version |
Let's write the equation of the line y=ax+b
. Then a1=1/atan(theta1)
, a2=1/atan(theta2)
, b1=rho1
and b2=rho2
(where theta1,rho1 and theta2,rho2 are the parameters of line1 and line2).
The intersection of line1 and line2 will be: x=(b2-b1)/(a1-a2)
and y=(a1b2-a2b1)/(a1-a2)
2 | No.2 Revision |
Let's write the equation of the line y=ax+b
. Then a1=1/atan(theta1)
, a2=1/atan(theta2)
, b1=rho1
and b2=rho2
(where theta1,rho1 and theta2,rho2 are the parameters of line1 and line2).
The intersection of line1 and line2 will be: x=(b2-b1)/(a1-a2)
and y=(a1b2-a2b1)/(a1-a2)
.
[Edit] More information on line-line intersection and solution for the vectorial format here.