1 | initial version |
for the covariance:
Mat_<float> samples = (Mat_<float>(3, 2) << 500.0, 350.2, 500.5, 355.8, 498.7, 352.0);
Mat cov, mu;
cv::calcCovarMatrix(samples, cov, mu, CV_COVAR_NORMAL | CV_COVAR_ROWS);
cov = cov / (samples.rows - 1);
cout << "cov: " << endl;
cout << cov << endl;
cout << "mu: " << endl;
cout << mu << endl;
result:
cov:
[0.8633207194507122, 1.216659545898438;
1.216659545898438, 8.173264974107346]
mu:
[499.7333374023438, 352.6666666666666]
2 | No.2 Revision |
for the covariance:
Mat_<float> samples = (Mat_<float>(3, 2) << 500.0, 350.2,
result:
cov:
[0.8633207194507122, 1.216659545898438;
1.216659545898438, 8.173264974107346]
mu:
[499.7333374023438, 352.6666666666666]